Linear Equations with Ordered Data

نویسندگان

  • Piotr Hofman
  • Slawomir Lasota
چکیده

Following a recently considered generalization of linear equations to unordered data vectors, we perform a further generalization to ordered data vectors. These generalized equations naturally appear in the analysis of vector addition systems (or Petri nets) extended with ordered data. We show that nonnegative-integer solvability of linear equations is computationally equivalent (up to an exponential blowup) with the reachability problem for (plain) vector addition systems. This high complexity is surprising, and contrasts with NP-completeness for unordered data vectors. Also surprisingly, we achieve polynomial time complexity of the solvability problem when the nonnegative-integer restriction on solutions is dropped.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Fixed Point Theorems in Generalized Metric Spaces Endowed with Vector-valued Metrics and Application in Linear and Nonlinear Matrix Equations

Let $mathcal{X}$ be a partially ordered set and $d$ be a generalized metric on $mathcal{X}$. We obtain some results in coupled and coupled coincidence of $g$-monotone functions on $mathcal{X}$, where $g$ is a function from $mathcal{X}$ into itself. Moreover, we show that a nonexpansive mapping on a partially ordered Hilbert space has a fixed point lying in  the unit ball of  the Hilbert space. ...

متن کامل

Coupled fixed point on ordered cone metric spaces with application in integral equations

Our theorems are on ordered cone metric spaces which are not necessarily normal. In the end, we describe the application of the main results in the integral equation.Although Du in [W‎. ‎S‎. ‎Du‎, ‎A note on cone metric fixed point theory and its equivalence‎, ‎Nonlinear Analysis‎, ‎72(2010) 2259-2261.]‎, ‎showed that the fixed point results in the setting of cone...

متن کامل

Dhage iteration method for PBVPs of nonlinear first order hybrid integro-differential equations

In this paper, author proves the algorithms for the existence as well as the approximation of solutions to a couple of periodic boundary value problems of nonlinear first order ordinary integro-differential equations using operator theoretic techniques in a partially ordered metric space. The main results rely on the Dhage iteration method embodied in the recent hybrid fixed point theorems of D...

متن کامل

Scattered Data Interpolation in N-Dimensional Space

Radial Basis Functions (RBF) interpolation theory is briefly introduced at the “application level” including some basic principles and computational issues. The RBF interpolation is convenient for un-ordered data sets in n-dimensional space, in general. This approach is convenient especially for a higher dimension N 2 conversion to ordered data set, e.g. using tessellation, is computationally v...

متن کامل

Extension of Cube Attack with Probabilistic Equations and its Application on Cryptanalysis of KATAN Cipher

Cube Attack is a successful case of Algebraic Attack. Cube Attack consists of two phases, linear equation extraction and solving the extracted equation system. Due to the high complexity of equation extraction phase in finding linear equations, we can extract nonlinear ones that could be approximated to linear equations with high probability. The probabilistic equations could be considered as l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1802.06660  شماره 

صفحات  -

تاریخ انتشار 2018